
 Input Validation Throwing Exceptions
 Target Course: CS2 (object oriented)
 Version 2 Aug 18, 2017

Le Moyne College INCUBATE (NSF Id 1500033) Page 1 of 3
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

Input Validation Throwing Exceptions

Target Course

CS2 (object oriented)

Learning Goals

A student shall be able to:

1. Apply principles of secure design and defensive programming techniques when developing
software.

IAS Outcomes

The CS2013 Information Assurance and Security outcomes addressed by this module are:

IAS Knowledge Topic Outcome

Defensive Programming 3. Explain the risks with misusing interfaces with third-party code and how to

correctly use third-party code. [Familiarity]

5. Demonstrate the identification and graceful handling of error
conditions. [Usage]

Dependencies

 Assumes knowledge of exceptions, using try/catch blocks.

 Assumes knowledge of checked and unchecked exceptions (if using Java).

 Assumes familiarity with building a data structure.

Summary

Discuss best practices in handling errors by throwing exceptions.

Estimated Time

[Provide the estimated amount of lecture time to cover this module, using the notion of time as
defined in CS2013.]

Materials

When is exception throwing used?

Throwing an exception is an alternative way to handle errors (to printing out error messages and
stopping execution). When an error condition is detected we might choose to create a new
exception and throw it. The exception is propagated down the stack of calling methods and if it
is not caught it causes the program to crash and terminate.

What is an example of throwing an exception?

Suppose you are creating a data structure that stores key-value pairs (e.g. a hash table, tree,

etc.), where each key is unique. In the following example the add method throws a

DuplicateKeyException if a duplicate key already exists in the data-structure. Note that

DuplicateKeyException is defined as a checked exception in a separate class (i.e. it is not

part of the Java standard library). Since DuplicateKeyException is checked, the add method

must declare that it throws the exception in its header. Additionally any method that calls add

will be required by the compiler to handle the DuplicateKeyException, either by catching it or

by declaring in its header that it too throws a DuplicateKeyException, as the method in the

Client class does in the example below.

https://creativecommons.org/licenses/by/4.0/

 Input Validation Throwing Exceptions
 Target Course: CS2 (object oriented)
 Version 2 Aug 18, 2017

Le Moyne College INCUBATE (NSF Id 1500033) Page 2 of 3
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

public class DemoDataStructure<K, V>

{

 public void add(K key, V value)throws DuplicateKeyException

 {

 if(this.contains(key))

 throw new DuplicateKeyException(“Key already exists”);

 }

 ... //assume more code here

public class DuplicateKeyException extends Exception

{

 public DupicateKeyException(String msg)

 {

 super(msg);

 }

}

public class Client

{

 public void useStrcuture throws DuplicateKeyException

 {

 DemoStrucuture d = new DemoStructure<String, String>();

 d.add(“A”, “Value1”);

 d.add(“A”, “Value2”);

 ... //assume more code here

 }

 ... //assume more code here

}

When should an exception be thrown versus simply reporting an error in some other
manner?

You may have noticed that the example above did not have to throw an exception to deal with a
duplicate key. The situation might have been handled using a conditional to detect the duplicate
key, report the error and reject the addition of the pair. This is a design choice..

Are there any differences between throwing a checked or unchecked exception?

If the exception thrown is an unchecked exception, the throwing method (add in the above

example) would not need to declare the exception in its header. The client method

useStructure would also not be required to handle it by the compiler. Thus unchecked

exceptions require less specification.

On the other hand, checked exceptions provide a more formal way to let calling methods know
about the exception as a possible output value.

When should an unchecked exception be thrown versus a checked exception?

According to the oracle java tutorial,

“If a client (or calling method) can reasonably be expected to recover from an exception,
make it a checked exception. If a client cannot do anything to recover from the
exception, make it an unchecked exception. “

Note that Java is one of the few programming languages that provide checked exception. In
most other languages all exceptions are unchecked. Thus it is important for the method
throwing the exception to document this as a possible output and for client methods to read the
documentation.

https://creativecommons.org/licenses/by/4.0/

 Input Validation Throwing Exceptions
 Target Course: CS2 (object oriented)
 Version 2 Aug 18, 2017

Le Moyne College INCUBATE (NSF Id 1500033) Page 3 of 3
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

What are some best practices for error handling with using 3rd-party interfaces?

We might think of DemoStructure as a 3rd party interface. Using 3rd party code responsibly

includes taking the time to understand all the different outputs including error codes or
exceptions which may be thrown by the 3-rd party code and handle them appropriately.
Typically this will involve reading the interface’s documentation. Failure to handle notices of
errors from 3rd party code can lead to unstable environments and security vulnerabilities.

One type of attack takes advantage of file system API by feeding in a string that contains
leading ghost characters [3]. One example is a triple-dot vulnerability where the string

.../../../winnt is provided to the API that ultimately gives access to a protected area on the

hard drive. In this type of attack the triple dot causes the API code to not recognize an attempt
at doing a directory traversal attack.

Assessment Methods

[List the assessment methods that have been used to assess student learning for this module.
The format of these methods is fairly flexible, but should be applied consistently within the
module.]

References

[1] The Java Tutorials https://docs.oracle.com/javase/tutorial/essential/exceptions. Aug 2015.

[2] Best Practices for Exception Handling. Oreilly, On Java.com.
http://archive.oreilly.com/pub/a/onjava/2003/11/19/exceptions.html Accessed Aug 2015.

[3] Hoglund G. and McGraw G. (2004). Exploiting Software: How to Break Code. Addison
Wesley.

https://creativecommons.org/licenses/by/4.0/
https://docs.oracle.com/javase/tutorial/essential/exceptions.%20Aug%202015
http://archive.oreilly.com/pub/a/onjava/2003/11/19/exceptions.html

